
2. WAVE PROPAGATION 

Abstract — In this paper the Generalized Finite Element 

Method (GFEM) with enriched plane wave is used to solve 

wave propagation problem in an electrically large domain. To 

treat problem with interface condition two approaches are 

investigated: Lagrange Multipliers and the Mortar Element 

Method. Numerical results are compared to known analytical 

solution.  

I. INTRODUCTION 

The Generalized Finite Element Method (GFEM) is a 

combination of the Finite Element Method (FEM) and the 

Method of Partition of Unity (MPU) [1]. The GFEM has 

been proved to be suitable to deal with wave propagation 

problems, where the classical FEM may requires a 

prohibitive mesh. The application of GFEM to such 

problems, through the use of special shape functions, allows 

optimize the number of unknowns. In this paper we use the 

analytical solutions of the Helmholtz equation in the form of 

plane waves to enrich the linear polynomial shape functions 

based on triangular element. Since they carry important 

information about the solution a small mesh can used. To 

ensure the continuity of the field between the two media, we 

also implement and check the efficiency of the Lagrange 

Multipliers [2] and the Mortar Element Methods [3].  

II. FORMULATION 

A. Weak form 

The model problem is governed by the Helmholtz 

equation in a domain as shown in Fig. 1.  To truncate the 

domain a type of Robin condition is imposed over ba Γ∪Γ . 

 
Fig.  1. Subdomains aΩ  and bΩ  with common interface Γ  

 

The weak form in each subdomain is obtained by 

standard procedure. In aΩ  the weak form is given by 
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B. Function space approach in GFEM 

To construct the approximation space for GFEM, we 

combine the FEM functions with the plane wave functions 

in different directions of the plane. For each element e , the 

local space of linear combinations of plane wave with 

directions 
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and q  is the number of wave directions. In this case the 

new enriched shape functions l
k

e
i

e
il wNP =  generate the 

space of approximation functions of GFEM. Thus for each 

element the electric field is approximated by 
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III. CONTINUITY BETWEEN SUBDOMAINS 

To enforce continuity along the interface Γ , two 

approaches are used: the Lagrange Multipliers (LM) and the 

Mortar Element Method (MEM).   

A. Lagrange Multipliers 

When the LM are used, the contour integral over Γ  in 

(1) is evaluated with  
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and a mixed formulation is obtained.  

To approximate the LM, we use the same approach used 

for the electric field approximation (4), i.e., given an 

element e  with one of its edges belonging to Γ , we write 
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where ),max( ba kkk =  and e
ilλ  are the Lagrange multipliers 

for the node i  in direction lξ . The matrix form of (6) is 

given by e
ee

Q λλ = , where eλ  is the vector with the 

Lagrange multipliers e
ilλ  and l

k
e
i

e
il wNQ = . Therefore, we 

add the continuity condition 
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Finally, the following symmetric system is obtained: 
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where bM , bM , af  and bf  are the conventional stiffness 

matrices and load vectors of each domain of the GFEM. aC  

and bC  are matrices related to integral terms over material 

interface [2]. Γ
aE  and Γ

bE  are the vectors of the unknowns 

amplitudes on Γ , while o
aE  and o

bE  are the ones out of  Γ  

in aΩ  and bΩ , respectively. The system (8) is ill 

conditioned and nonpositive definite [2]. 

B. Mortar Element Method 

In [3] the MEM is used for enforcing continuity 

constraints. This method is related to LM through the 

mortar condition as one can see from (9)  
 

 Γ−Γ = bbaa ECCE
1 .   (9) 

 

Using this condition the unknowns over the whole 

domain, ba Ω∪Ω  , can be linked as follows: 
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which can be expressed as 
 

 EHE
~

=    (11) 

where H
~

 is the coupling matrix and Id  is the identity 

matrix.  

Applying the coupling matrix on the finite element 

generalized system SME = , we have 
 

 SHEHMH
TT ~~~

= .  (12) 
 

The resultant system above is sparse and positive 

definite [3] and, therefore, it can be easily solved by a great 

range of methods. 

IV. RESULTS  

Consider the domain 5,5 ≤≤− yx  where a unit 

amplitude incident wave in medium a  ( )π2=ak   travels in 

x+ -direction towards medium b  ( )π4=bk . The interface 

surface is the 0=x  plane.  

A. GFEM with LM 

In this case the domain is discretized with a mesh of 

556  elements and 311   nodes. Two plane waves are used 

to enrich the linear polynomial shape functions. The total 

number of unknowns is 706 .  Fig. 2 shows the real and 

imaginary parts of the electric field along 0=y  for the 

analytical and numerical solutions. As it can be observed 

there is a good agreement between the solutions. The 

relative error measured by the energy norm is 578.1 −E  

and  512.1 −E  for the real end the imaginary parts, 

respectively. 
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Fig.  2. Plane wave transmitted from a  to b  using LM 

B. GFEM with MEM  

As expected, in this case we find a resultant system of 

equations sparse and positive definite. However to get a 

good result, it is used a mesh of 4783  elements and 2454  

nodes. The measured error is 022.0  for the real part and 

019.0  for the imaginary part. 
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